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This paper is designed to interest analysts and probabilists in the methods of
the ‘other’ field applied to a problem important in biology and in other contexts.
It does not strive for generality. After §1 a, it concentrates on the simplest case
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70 A. Champneys and others

of a coupled reaction-diffusion equation. It provides a complete treatment of the
ezistence, uniqueness, and asymptotic behaviour of monotone travelling waves to
various equilibria, both by differential-equation theory and by probability theory.
Each approach raises interesting questions about the other.

The differential-equation treatment makes new use of the mazimum princi-
ple for this type of problem. It suggests a numerical method of solution which
yields computer pictures which illustrate the situation very clearly. The prob-
abilistic treatment is careful in its proofs of martingale (as opposed to merely
local-martingale) properties. A new change-of-measure technique is used to ob-
tain the best lower bound on the speed of the monotone travelling wave with
Heaviside initial conditions. Waves to different equilibria are shown to be related
by Doob h-transforms. Large-deviation theory provides heuristic links between
alternative descriptions of minimum wave speeds, rigorous algebraic proofs of
which are provided.

Since the paper was submitted, an alternative method of proving ezistence
of monotone travelling waves has been developed by Karpelevich et al. (1993).
We have extended our results in different directions from theirs (one of which is
hinted at in §1a), and have found the methods used here well equipped for these
generalizations. See the Addendum.

1. Introduction and summary

(a) A motivating example

This subsection is intended only to indicate heuristically one of the directions in
which the topic will be developed.

Someone reading the results in this paper and familiar with the theory of
harmonic oscillators might well make the following guess.

Consider a typed branching diffusion which evolves as follows. Each parti-
cle, once born, lives for ever. Each particle has a type which is a real number
evolving (independently of the types of other particles and of the positions of
all particles) as an Ornstein—Uhlenbeck process associated with the operator
+6(d?/dy® — yd/dy). Here 6 is a positive parameter analogous to temperature.
A particle of type y moves on the real line as a driftless Brownian motion with
variance coefficient ay?, where a is a positive constant. Moreover, a particle of
type y will, in a small time interval of length h, give birth to one child (born
with its parent’s type y and at its parent’s current position) with probability
(ry* + p)h + o(h), where r and p are positive constants. At time 0, there is one
particle of type 0 at position 0. Let L(t) be the position at time ¢ of the leftmost
particle. Then the wave speed

c(0) := — lim ¢t ' L(t)

t—o0
exists almost surely and satisfies

2(2r + p)?

2 _ 2 _
c(0)? = 00 if 6 < 8r, c(0) —2a{r+p+ e

}if9>8r.

Phil. Trans. R. Soc. Lond. A (1995)
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Algebra, analysis and probability for a coupled system 71

The study of such models will be our concern in sequels. Here, we consider a
much simpler model.

(b) The classical case: analysis

Let a and r be positive constants. The Fisher—-Kolmogorov—Petrowski—Piscounov
(FKPP) equation:
ou 0*u
Fri %agx—z + r(u?® — u),
where u = u(t, x) is a function on [0, 00) X R, has been extensively studied both by
analytic techniques (Fisher 1937; Kolmogorov et al. 1937), and by probabilistic
methods (Watanabe 1967; McKean 1975, 1976; Bramson 1978, 1983; Biggins
1977, 1979, 1992; Uchiyama 1981, 1982; Freidlin 1985, 1991; Neveu 1987; Chauvin
& Rouault 1988, 1990; Elworthy & Zhao 1993; Elworthy et al. 1993), to name
but a few. The analytic facts of primary interest to probabilists (and therefore
for the original motivation) are as follows.

For ¢ > v/2ar, equation (1.1) has a monotone travelling-wave solution of wave
speed c:

(1.1)

u(t,x) = w(x — ct),
where w is a monotone function on R, increasing from 0 at —oo to 1 at oco; the
function w is unique modulo translations. For ¢ < +4/2ar, there exist travelling-
wave solutions of wave speed ¢, but none of these is monotonic. (‘Spiralling’
solutions to coupled reaction-diffusion equations are of great interest to mathe-

matical biologists since work of Turing (see, for example, Britton 1986; Murray
1989).)

(¢) A coupled reaction-diffusion system: algebra

Let ay, as, 71, T2, q1, g2 be positive constants, fixed throughout. Let 8 be a
positive parameter, to be thought of as analogous to temperature. We consider a
generalized FKPP system of equations,

2
(1.2) %—Qtf = %A-g;g + R(u® — u) + 0Qu,

where u is a vector-valued function from [0,00) x R to R?, and where

A= a0 , R::(r1 0 , Q= —h ql).
0 a- 0 r 92 —Q2

(We use “:=’ to mean ‘is defined to equal’.) Thus, for example,
Ouy(t, 0%uq(t, x
Pi2) 10, TG ) — s (0,2)] — g (8, 7) + Barua(t, ).

The function u(t, z) := w(z — ct) where w : R — R?, provides a travelling-wave
solution of (1.2) if (and only if)

(1.3) 1Av" + cw' + R(w® — w) + Quw = 0,

so that, for example,

(14)  laywi(z)+ cwi(z) + rijwi(x)? — wi(z)] — Oqwi(z) + Oqrws(z) = 0.
Phil. Trans. R. Soc. Lond. A (1995)
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72 A. Champneys and others

We switch to a ‘phase-space’ picture, writing v for the column-vector function
with components (in the most illuminating labelling)

(Ula V2, U3, '1)4) = (w1> Wa, wlla ’LU;),
and regarding (1.3) as a first-order equation

(15) ¢ = ),

where, for example,
fi(v) = vs, fa(v) = _201_1[07)3 + 7'1(0% —v1) — Oqrvy + Oq,vs).

Note that (1.5) will have equilibria where f(v) = 0, that is, where (v, vy, v3,v4) =
(wy, wy, 0,0), where the two-dimensional vector w satisfies

R(w® —w) + 0Qw = 0.

The ‘source point’ S = (0,0,0,0) and the ‘target point’ T = (1,1,0,0) will always
be equilibria. If 7,75 > 462q,q., there will also be equilibria at the two points

(1.6) E.=(3+0p £ AL +6p,F/A0,0),
where
(1.7) pii=q;/r; and A= 1 — 6p;ps.

Our primary concern in this paper is with monotonic waves from S to T, that
is, with solutions of (1.3) for which both w; and w, are monotonic increasing
functions with w;(—o0) = 0 and w;(+00) = 1. We shall also consider monotonic
waves from S to E.. We defer study of waves from E. to T to another occasion.

Suppose that r is an equilibrium point of (1.5). To study the behaviour of (1.5)
in the neighbourhood of r, we write v(z) —r = z(z), and expand (1.5) to first
order in z to obtain

(di—; = K(r)z, K;(r) := gq{; evaluated at v = 7.

The matrix K(r) is called the stability matriz of equation (1.5) at 7. The dimen-
sion dy(r) [respectively d,(r)] of the stable (respectively, unstable) manifold of
(1.5) is the number of eigenvalues of K (r) of negative [respectively, positive] real
part, counting algebraic multiplicity (see Coddington & Levinson 1955; Hartman
1982; Carr 1981).

The stability matrix K (T") at T is of particular importance to us. We find that

0 0 1 0
0 0 0 1
1.8 K(T) = K.9(T) = )
( ) ( ) ’9( ) 51(9%—"“1) —6:0q, —bic 0
—690q 52(9(12 - "“2) 0 —09C

where §; := 2a; '. In particular, the characteristic polynomial of K. o(T) is 616,
times

(1'9) H()‘? ¢, 9) = Fl()‘v ¢, 9)F2()‘7 c, 9) - 92(]1%)
Phil. Trans. R. Soc. Lond. A (1995)
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Algebra, analysis and probability for a coupled system 73
where
(1.10) F,(\ ¢ 0):= A 1 Lo\ +ed+r,—6
' T e — b, %ai)\—i-c 2 ’ &

(1.11) Lemma. If ¢ > 0, the dimensions of the various stable and unstable
manifolds of the equilibria of equation (1.5) may be described as follows:

(i) du(S) = 2;
(i) do(T) = {

4 if0(p1 + p2) <1,
3  otherwise;

4 if py > py and 0(py + p2) > 1,

(iif) if A >0, then dy(Ey) = .
3 otherwise.

For E_, the p, > p; must be replaced by p; > p,.

(It should be noted that we later make the convention that the types are
labelled so that p; > p,.)

For every c, the fact that d,(S)+ds(T") > 5 (for our four-dimensional problem)
makes it plausible that there exists a (possibly non-monotonic) travelling wave
from S to T. When the sum of these dimensions is 6 and at least one travelling
wave from S to T exists, it is to be expected that there is a 1-parameter family
of travelling waves from S to T'. Bifurcation diagrams for equilibrium solutions
of system (1.3) for the (wy, ) and (w,,0) planes are shown in figure 1.

We now begin to consider the existence of monotonic travelling waves from S to
T. For such a travelling wave with speed c to exist, there must exist a ‘monotone’
eigenvalue of K, »(T') in the sense now to be described.

(1.12) Definition. An eigenvalue X of a real 4 x 4 matrix K will be called stable
(respectively, unstable) monotone if

(i) X is real and negative (positive), and

(ii) K has an eigenvector v corresponding to A with v; and v, of the same sign.

(1.13) Lemma. For fixed § > 0, there exists a finite positive number c(#) such
that

(i) for ¢ > ¢(0), the matrix K.o(T) has precisely two stable monotone eigen-
values, and

(ii) for ¢ < ¢(0), the matrix K. y(T) has no stable monotone eigenvalues.

For ¢ > 0, we have
(1.14) ¢ > ¢(0) if and only if there exists a real negative X\ such that

Fy(\c,0) <0 (i=1,2) and H(\,¢,0) := (F1Fy) (), ¢,0) — 0%qigs > 0.
There exists precisely one monotone eigenvalue \(6), of K@) ¢(T) of algebraic

multiplicity 2 and geometric multiplicity 1, and at (\(), c(6),0), we have

OH
(1.15) Fi<0 (i=12), H=0, Hy="5-=0.

Phil. Trans. R. Soc. Lond. A (1995)
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74 A. Champneys and others
P (@) 45 (b)
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-0.5 T I T f T I
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Figure 1. Bifurcation diagrams of equilibria in the (w1, 0) and (ws, 6) planes, in which the branch
labelled 1 is S, 2 is T and 3, 4 are E respectively. Label 5 corresponds to the bifurcation at
0 = 6o and 6 to 6 = 6*. Solid lines represent stable orbits, dashed lines represent unstable ones.
(a), (b) represent the case p1 > pa. (c) represents the case p1 = pa; the bifurcation diagram
in the (w2, 6) plane is obtained by interchanging the labels 3 and 4. (a) a = (2,1), ¢ = (2,1),
r=(1,2), p=1(2,0.5); (b)) a =(2,1), ¢ =(2,1), 7 = (1,2), p=(2,0.5); (¢) a = (2,1), ¢ = (2, 1),
r=(2,1), p=(1,1)

It will now be convenient to write for a probability measure m on {1,2} (so
that 0 < my =1—my < 1):
(1.16) m(a) := mia; + maaz, m(r) := myr1 + mars, etc.

Next, we define (the supremum being over all probability measures on {1,2}, of
course)

(1.17) cp = sglp\/2m(a) m(r), ey = y/2m(a)m(r),

where 7 is the unique probability measure on {1, 2} such that 7#@Q = 0: that is,

(1.18) ™ =q/(a+ae),  m=a/lat )
We use the symbol cp in deference to Freidlin who did deep work on weak

Phil. Trans. R. Soc. Lond. A (1995)
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Algebra, analysis and probability for a coupled system 75

coupling which is here related to the 8 | 0 limit. The suffix ‘M’ stands for ‘mean’,
since the chain with § = oo will essentially always be in its invariant measure.

Recall the Perron—Frobenius Theorem. This implies that a square matrix M
with all off-diagonal entries strictly positive has a special eigenvalue App(M)
with an associated eigenvector with all entries positive and such that every other
eigenvalue of M has real part less than App(M). Moreover, any eigenvector with
all entries positive must be a multiple of the Perron—Frobenius eigenvector (see,
for example, Seneta 1981).

(1.19) Lemma. (i) If ¢ > ¢(#), and X is a stable monotone eigenvalue of K, o(T')
with monotone eigenvector v, then —\c is the Perron—Frobenius eigenvalue of
X244+ 6Q + R, and the first two components of v provide the corresponding
Perron-Frobenius eigenvector.

(ii) For 6 > 0,

(1.20) o(6) = inf Apr (314 + 1~ (R +0Q)),

the infimum being attained when p = —\(6).
(iii) We have

(1.21) c(0) = inf sup{;um(a) + u~"[m(r) — 01(m, Q)]},
where
(1.22) I(m, Q) i= (/i@ — /)’
(iv) The infimum and supremum in (1.21) may be interchanged, so that
(1.23) c(6)" = 25up{m(a) fm(r) — OI(m, )]}

Note that I(w,@Q) = 0. The agreement of (1.20) and (1.21) is a trivial case of
the Legendre transformation which occurs in the celebrated Donsker—Varadhan
Theorem on large deviations for occupation times (see Varadhan 1984; Deuschel &
Stroock 1989; Ellis 1985). The large-deviation heuristic for (1.23) will be explained

in§1f.
(1.24) Lemma. The function c(-) is non-increasing on (0, 00), and

191{%1 c(0) = c, ngg c(0) = ey

The functions c¢(-) and A(-) are real analytic on (0, 00).

Monotonic waves from S to Ei: a Doob h-transform. The following result is
interesting for many reasons.

(1.25) Lemma. Suppose that 0 is fixed at a value where A > 0, so that E, and
E_ exist. If E = (ay, a,0,0) denotes either E, or E_, then the substitution

(1.26) §; == g/ (J # 1), Ty 1= 150, U = u; /oy, Wy = wi /oy

transforms (1.2) and (1.3) into their ~ versions, monotonic waves from S to E
for the original problem corresponding exactly to monotonic waves from S to T
for the ~ problem. Lemmas 1.13 and 1.19 therefore automatically transfer to the

Phil. Trans. R. Soc. Lond. A (1995)
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76 A. Champneys and others

case when T is replaced by E, or E_. Let the critical c-values associated with
E, and E_ in the untransformed variables be written ¢, (0) and c_(6).

Because the transformation (1.26) is 6-dependent, we do of course lose the
monotonicity in 6 of the ‘minimum wave speed’ ci(f) from S to E. for the
original model.

In the next subsection and in § 3, we examine some differential-equation theory
for the travelling-wave system (1.3). In this theory, E, and E_, when they exist,
are treated on exactly the same basis as T'. In the probability theory, attention
is focused initially on waves from S to T'. However, the transformation (1.26) fits
naturally into the probability, and brings the study of waves from S to F, into
its scope, because, as will be explained in §4, this transformation corresponds to
a familiar Doob h-transform.

(1.27) Convention. We shall henceforth suppose for definiteness that
p1 = p2, where p; := g;/r; as usual.
We define
(1.28) 6o == (p1 + p2) ", 0" := (4p1p;) Y2, so that 0 < 6, < 6”.

Thus E. will exist when 0 < 6 < 6*. Moreover,
when 6 =0, then E, =(1,0,0,0) and E_ = (0,1,0,0),
when 6 = 6, then E, = (2p160,2p26,,0,0) and E_ =T = (1,1,0,0),

when 6 = 0%, then E, = E_ = L(1+ v/p1/p2, 1 + /p2/p1,0,0).

Some relations between the various critical c-values are included in the following
lemma. We write ¢(0), etc., for what should be written ¢(0+), etc.

(1.29) Lemma. The following results hold:
C(8) = e (0%), e (80) = c(By),
d(0) <0 forall>0, ¢ ()>0if0<8<Li(4p}+ pips)~ "7,
c(0) > max {c;(0),c_(0)} if min{a;/as+7r1/79, az/ay +ry/T1} > 2,
¢(0) = max {c;(0),c_(0)} otherwise.

All results in this §1 ¢ are proved in §2.

(d) The main ODE theorem

We now give our main analytic result on the existence and uniqueness of trav-
elling waves. It is worth noting that its proof is valid for problems with nonlin-
earities considerably more general than those in the model (1.3).

(1.30) Theorem. Suppose that § > 0 and ¢ > 0. If ¢ > ¢(0) (respectively, c, (),
c_(9)), then there exists one and, modulo translation, only one monotone solution
of (1.3) with

w(z) —» S as x — —oo and w(z) — T (respectively, E,, E_) as x — +oo0.

In particular, if @ € (0,0*), then, for sufficiently large c, all three monotone
travelling waves exist.

Phil. Trans. R. Soc. Lond. A (1995)
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Algebra, analysis and probability for a coupled system 7

The proof of this result in §3 corresponds closely to the numerical analysis
described in the next subsection, and gives a very clear picture of the paths.
Other approaches to the existence of heteroclinic orbits in related situations are
available. See, for example, Dunbar (1984, 1986), and, for a powerful approach
based on Leray—Schauder index theory (Vol’pert & Vol’pert 1990).

A Lyapunov functional. For completeness, though it plays no part in our proof
of the existence of monotone travelling waves, we note that when an inner product
of equation (1.3) with diag (g2, ¢1)w’ is taken, then a Lyapunov functional which
is monotone on all trajectories of (1.3) emerges. This functional is an important
ingredient in the treatment of general (not necessarily monotone) heteroclinic
orbits connecting the equilibria of (1.3). For monotone orbits, it gives too weak
a bound: in particular, Lemma 3.1 does not follow from it.

(e) Numerical results

In this subsection we present the outcome of numerical experiments on equation
(1.3) that serve to illustrate the algebra and analysis. Loci with 6 of the critical
wave speeds c¢(#) and c..(f) are computed as are profiles of travelling waves from
S to T'. Also, in figures 3 and 4, the behaviour of trajectories on the unstable
manifold of S, which is used heavily in the proof of Theorem 1.30 (see §3), is
plainly depicted. We strongly recommend the reader to consult these figures when
reading § 3.

Two different numerical techniques have been used. First, direct numerical
integration of (1.3) using a variable order, variable step-size Adam’s method
(NAG routine DO2CBF) was used to create the unstable manifold pictures. The
initial conditions were taken to be

(1.31) (w(0),w'(0)) := v(0) = €[(cos p)w + (sin ¢)w],
where, in the notation introduced in § 3 below,
w = (01,05,A01,A0,) and W := (U1, Tz, AUy, ATp)

are vectors spanning the unstable eigenspace (linear approximation to the un-
stable manifold) of S, € is a small positive number and ¢ is a parameter that
we allow to vary. By standard theorems on unstable manifolds (see, for example,
Coddington & Levinson 1955) solutions with initial conditions (1.31), for e suffi-
ciently small will form good approximations to the unstable manifold of S over
a (fixed) finite time interval.

The second numerical technique is the continuation of solutions (either equilib-
ria or heteroclinic orbits) of (1.3) as parameters are varied. Such path-following
we have implemented using the code AUTO (Doedel et al. 1991a,b) which incor-
porate pseudo-arclength continuation and so can compute around limit points.
The continuation of equilibria (with possible extra algebraic conditions defining
¢(0) or c1(0)) is then a standard task, AUTO being able to compute stability and
detect bifurcations. To continue paths of heteroclinic orbits from S to T', we have
used the approach of Beyn (1990); see also Friedman & Doedel (1991), Doedel
et al. (1991b) for a similar method. Here, one approximates the boundary-value
problem (1.3) subject to

v(iz) > S as x— —oo, v(z)—>T as z— oo,
by a two-point boundary-value problem on a (large) finite interval [0,7] with

Phil. Trans. R. Soc. Lond. A (1995)
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boundary conditions,
(1.32) L(v(0)) =0, Ly(v(r)) =0,

where £, and £, are projection operators onto subspaces orthogonal to the unsta-
ble eigenspace of S and the stable eigenspace of T" respectively. The computation
of paths of solutions to (1.3) with boundary conditions (1.32) as a parameter is
varied can readily be implemented using AUTO. A similar approach can be used
to follow heteroclinic orbits from S to E, or, indeed, from E, to T

First, in figure 1, we illustrate bifurcation diagrams with 6 of the equilibrium
solutions of (1.3) for illustrative values of the other parameters a := (a1,a2),
q := (q1,¢2) and r := (rq,7). The stability properties of each equilibrium is
as stated in Lemma 1.11. Note in particular that T undergoes a transcritical
bifurcation at 8 = 6, that E, coalesce at a saddle-node bifurcation when 6 = 6*,
and that S undergoes no bifurcation. This behaviour is independent of ¢ and
qualitatively depends on the parameters only in the relative magnitudes of p;
and py.

Next, we illustrate Lemma 1.29 on the nature of the curves c(f) and c4(0)
which define the minimum wave speeds for monotone travelling waves from S to
T and E. respectively. Figure 2 a—c depicts these curves for three different sets
of values of the parameters a, ¢ and r. Figure 2d magnifies part of figure 2c.
In each of the three cases, it can be observed that ¢/(#) < 0 for the complete
range of 6 plotted, that ¢/ () > 0 for all sufficiently small 6, c,(6*) = c_(6*)
and ¢(0y) = c_(6p). These observations verify the first part of Lemma 1.29. The
parameter values used in (a) illustrate the case

217y
a N
and it can be seen that ¢(0) = max{c(0),c_(0)} (= c4(0)) as stated in the
second part of Lemma 1.29. Notice further that c_ is a monotonically increasing
function of 6 in this case, that ¢, (6) > max{c(6),c_(0)} for all 8 € (0,6*), and
that ¢, has a single local maximum in this interval.
Figure 2b, c illustrates the complementary case where

In both figures ¢(0) > max{c(0),c_(0)}, as stated by the second part of Lemma
1.29; moreover ¢, (0) = c_(0) in (b). This latter equality is not inconsistent with
the conclusions of the lemma and is due to the symmetry,

92 _"N_ o

aq T
For this case, as in (a), c_ is monotonically increasing and c, has a single local
maximum. For the parameter values used in (c), which are a small perturbation of
those in (b) (the only parameter to change is a;), ¢;(0) < c_(0) and there exists a
6 € (0,6p) such that ¢, () = c_(8). Notice also with reference to figure 2 d, which
is a magnification of part of figure 2 ¢, that ¢_ has developed a local maximum
and a local minimum and is such that c¢_(f) = ¢(8) for three distinct values of
6 € (0,6,). We conclude that the ordering of ¢(f) and c(6), the three minimum
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(@) (®)
5
T 1 I 1 1.8 T T T I 1
0 0.2 04 0 0.2 0.4 0.6
(c) (d)
2.4 - 2.07 1
2 -
22 1 5
¢ 2.06
1 3 4 1 3
e / / | 4
2.0 I
i 2.05 A 1
1.8 T T T | L T T T T T
0.2 04 0.6 0.2 0.3 0.4
0 0
Figure 2. The critical curves ¢(8) (labelled 1), c(8) (2), and c—(6) (3). Label 4 corresponds to
6 =60 and 5to 8 =0%. (a) a =(2,1), ¢ =(6,3), r = (3,4); (b) a =(2,1), g =(2,1), 7 = (1,2);
(e) a=1(1.8,1), ¢g=(2,1), 7 = (1,2); (d) a = (1.8,1), ¢ = (2,1), r = (1,2).

wave speeds for monotone travelling waves to T and E. respectively, depends
crucially on the values of the parameters a, ¢ and r as well as on 6.

Figures 3 and 4 depict trajectories on a small piece of the unstable manifold of
S projected onto the (w;, w,)-plane for the values of a, ¢ and r used in figure 2 a.
In each figure, orbits in the unstable manifold are represented by dashed lines,
solutions corresponding to which travel outwards from S = (0,0) as z increases.
Also the parabolae,

P : Oqw; — (11 + 0g)w; + riwi =0,
Py : Ogaw; — (3 + 0g2)ws + raw; =0,

the significance of which is explained in § 3, are superimposed on the trajectories.
An intersection point between the two parabolae corresponds to an equilibrium
of (1.3).

Figure 3a—d illustrates, for three different values of ¢, the case where 6 < 6, so
that there are a total of four equilibria, of which only T is stable (ds(T") = 4). In
(a), ¢ > max{cs(0),c(0)} so that Theorem 1.30 states there to be a monotone
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(a) (&)
2 12
Wy 0.8
04
@
=
—
oE ©
2
= O
LT O
=w
22
£0
=
-9
oL«
om 1 1.1 12 1.3 1414515
=Z wq Wy
EE Figure 3. Solutions on the unstable manifold of S for § < 6y at parameter values for which
c(8) = 3.23589, c,(0) = 3.94852 and c_(0) = 2.98521. (a) a = (2,1), ¢ = (6,3), r = (3,4),
0 =02,c=45;(b)a=(21),q=1(6,3),r=(3,4),0 =02,¢=3;(c) a =(2,1), ¢ = (6,3),

r=(3,4),0=02,c=3; (d) a=(2,1), ¢=(6,3), r =(3,4), § = 0.2, ¢ = 1.5.

(@)

J 3 1.2 5
£az3 wy 0.8

0.4
@

0 1 2

>" E wq
O 43 Figure 4. Solutions on the unstable manifold of S for § > 6* at parameter values for which
=7 . c(0) = 3.18153. (a) a = (2,1), ¢ = (6,3), r = (3,4), 6 = 0.5, ¢ = 4.5; (b) a = (2,1), ¢ = (6, 3),
= r=(3,4),6 =0.5, c=1.5.
T O
= w

travelling wave (heteroclinic orbit of (1.3)) connecting S to each of T and F..
Moreover, each monotone connection is unique. From the figure we can see that
there are a continuum of connections from S to 7', which contain orbits that
approach T tangent to both positive and negative multiples of a non-positive
eigenvector. These two kinds of orbit form two separate components of the set of
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12
(a) \ ®)
1.0 —
1.1
“ 5
vy :
05 g 4 3|2
5 1.0+ 1
5 3
Aokl 0.9
0 02 04 06 08 10 1 2 3
time / 20 ¢

Figure 5. Continuation of travelling waves with ¢ for a = (2,1), ¢ = (2,1), r = (1,2) and 6 = 1.
(a) Profiles of travelling waves, (b) maximum wy-value of travelling wave against c. (a) a = (2, 1),
q=1(6,3),7r=(3,4),0=02,c=3;(b) a=(2,1), ¢ =(6,3), 7 = (3,4), § = 0.2, c = 1.5.

connections to T', the boundary between which is the monotone connecting orbit.
The outer limiting trajectories of each component form the monotone travelling
waves to F, and E_. In figure 3b, c_(f) < ¢ < min{c, (), ¢(f)} and so a mono-
tonic travelling wave from S should only exist to F_. Once again a continuum of
connections can be observed from S to T, however the non-monotonicity of all
these connections is not apparent from the figure (observe from figure 2 a that
the value ¢ = 3 used is only a little smaller than ¢(f) ~ 3.23589). The limiting
trajectories of this continuum are once again heteroclinic orbits from S to F..
By examining figure 3 ¢, which is a magnification of part of figure 3 b, it can now
be observed that the connection to E, is not monotonic (¢, (f) ~ 3.94852). In
figure 3d, ¢ < min{c(),c(6)} and so there is no monotone connection from S
to any of T or E,. A continuum of trajectories from S to T with its limiting
trajectories forming connections to F. can once again be observed in the figure,
although due to complex eigenvalues at all three target points the trajectories
look rather confusing when projected onto a plane.

Figure 4a, b illustrates, for ¢ > ¢(#) and ¢ < ¢() respectively, the case where
6 > 0*(> 6y) so that Fy do not exist and T is unstable. In the former case,
a monotone travelling wave from S to T' can be inferred from the existence of
trajectories in the figure which approach a neighbourhood of T" monotonically but
leave along different components of a non-positive eigendirection. In figure 4 b, the
existence of a connection can similarly be inferred but it is clearly non-monotonic.

Figure 5a,b shows the results of following the paths of travelling waves from
S to T as the parameter c is decreased. The values of the other parameters are
as in figure 2a with 6 = 1 > 6*, so that T is unstable, and travelling waves
from S to T are consequently isolated. In (a) profiles of the w,-coordinate of
travelling waves are depicted for various different c-values which can be read off
from corresponding labels in (b). Profiles of the w;-coordinate are similar. Label 2
corresponds to the travelling wave for ¢ = ¢(#) = 2.11058. Notice that for ¢ > ¢(6)
(e.g. at label 1, where ¢ = 3) the profile is monotone, whereas for ¢ < ¢(6) (e.g.
at label 5, where ¢ = 1) the wy-coordinate can be seen to oscillate around the
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82 A. Champneys and others

value 1 at the right-hand endpoint. Figure 5b shows how the maximum value of
w, for the numerically computed travelling wave varies with ¢. A similar figure
was obtained by plotting the maximum of w; against c. Recall that, due to the
truncation of the infinite interval of the boundary-value problem being solved and
to the nature of the right-hand boundary condition (1.32), we should expect the
maximum value of w; or w, to be slightly less than 1 for a monotone connection
from S to T'. It can be observed from the figure that the maximum value increases
through 1 as ¢ is decreased through ¢ = 2, which is consistent with the minimum
speed of monotonic travelling waves being ¢ = 2.11058.

(f) Probability (and analysis)

We consider a two-type branching Brownian motion. At time ¢ > 0, there are
N (t) particles, the kth particle — in order of birth — having position X(t) in R
and type Yi(t) in I := {1,2}. The state of our system at time ¢ is therefore

(1.33) (N(@®); X1(8)s s Xy (); Ya(2), -, Yo (1))

Particles, once born, behave independently of one another. Each particle lives for
ever. The type of a particle (once born) is an autonomous Markov chain on I
with @-matrix Q. While a particle is of type y (in I), its position varies as a
Brownian motion on R of zero drift and constant variance coefficient a(y), and
it gives birth — to one child each time, at its own current position and of its own
current type — in a Poisson process of rate r(y). We write

(1.34) P,, with associated expectation E, ,,

for the law of our process when it starts from one particle at position X;(0) = z
and of type Y;(0) = y. By martingale (respectively, local martingale, supermartin-
gale,...) we mean a process which is for every P, , a martingale (respectively,...)
relative to the natural filtration (P, ,-augmented if it makes you happier) of the
process at (1.33).

Here are some of our main results. We concentrate on those related to the
differential-equation theory, and thereby (to some extent) play down the true
role of probability theory which is to study sample paths. Many interesting prob-
abilistic and analytic problems are left to various follow-up papers.

(1.35) Notation. In the remainder of this subsection, we shall write
u(t,z,y) (y € I) rather than u,(¢, z)
in describing a map u : [0,00) X R x I — R, and, similarly,
w(z,y) rather than w,(z)

in describing a map w : R x I — R. At the same time, let the vector (v;,v,) be
denoted by (v(1),v(2)

).
If u satisfies the reaction-diffusion system (1.2) with 0 <
I and with initial condition

(1.36) Theorem. (
u<1on[0,00) xR

(1.37) w(0,z,y) = f(z,y),
Phil. Trans. R. Soc. Lond. A (1995)
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Algebra, analysis and probability for a coupled system 83

then u has a McKean representation:

N(t)

(1.38) u(t, z,y) = Eq,y H F(Xk(t), Ya()).

(ii) If w is a C* function on R x I, then

N(t)

[T w(Xi(®) + ct, Yi(2))

k=1
is a local martingale if and only if w solves the travelling-wave system (1.3),
namely
1AW + cw' + 0Qw + R(w® — w) = 0.
If f is a C? function on R x I, then
N(t)

Zf Xi(t) + ct, Yi(t))

is a local martingale if and only if f solves the linearization of (1.3) at the point
(1,1):
TAf" +cf +6Qf + Rf = 0.

The second part of the theorem gives a nice interpretation of linearization. It
also allows us to take logarithms, turning a product into a sum, and thereby
obtaining information about the non-linear system from the linear one. This key
idea of McKean’s is exploited in the proof of Theorem 1.41. First, we need the
relevant information about ‘additive’ martingales.

(1.39) Theorem. Let ¢ > c(f). Let A be the monotone eigenvalue of K, o(T)
nearer to 0. Thus —\c is the Perron—Frobenius eigenvalue of -;—)\214 +6Q + R; let
vy be the corresponding eigenvector with vy(1) = 1. Define

N(?)

(1.40) Z\(t) :== Z oA (Yi(t)) exp{A[Xk(t) + ct]}.

k=1

Then Z) is a true (not just a local) martingale, and Z,(t) converges to a limit
Z(00) almost surely and in L'. Moreover, P, ,(Zx(c0) > 0) =1 for all z and y.
(1.

Note that the next results give information on the PDE (1.2), not only on the
travelling-wave equation (1.3). A more complete study of the PDE will be given
elsewhere by one of us (J.W.).

(1.41) Theorem. Continue with the assumptions and notation of Theorem 1.39.
If u satisfies the coupled reaction-diffusion system (1.2) and u(-,-,-) € [0,1], and
if also, for y € I,

(1.42) 1 —u(0,z,y) ~ vr(y)e*® (z — 00),
then, as t — o0,

u(t,z + ct,y) — w(z,y),
Phil. Trans. R. Soc. Lond. A (1995)
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84 A. Champneys and others
where
(1.43) w(z,y) = E, , exp[—2Z,(00)].

This function w satisfies the travelling-wave equation (1.3) and is, modulo trans-
lations, the unique monotonic wave of speed ¢ from S to T'.

(1.44) Theorem. As t — oo, we have almost surely (a.s.)
(1.45) t 'L(t) — —c(#), where L(t) := inf X,(¢).

E<N(t)

If u satisfies the coupled reaction-diffusion system (1.2), and if 0 < u(t,z) < 1 for
t >0 and z € R and if also

1 ifzx >0,
(1.46) u(0,z,y) =3 ifz=0,
0 ifz<0,

then fort > 0, u(t,z,y) = P, ,[L(t) > 0], and u is an approximate travelling wave
of speed ¢(f) in the sense that

1 if v > ¢(6),
(1.47) u(t,z +t,y) —
0 ify<c(8).

For the remainder of this subsection, we consider the case when X;(0) = 0 and
Y1(0) = 1: that is, we work with the Py ; law: P:= Py ;.

We now give some rough — and very dangerous — large-deviation heuristics for
(1.45). Let m denote a probability measure on the type-space I. For a single
particle performing a Markov chain on I with @-matrix 680, the likelihood that
it will spend time tm(y) in y by time ¢ is

exp{—t0I(m,Q)}

in a sense made precise by large-deviation theory. For our (N, X,Y") process, we
expect the number of particles at time ¢ which have their ‘type-times’ in the
proportion described by m to be roughly

exp{t[m(r) — 0I(m,Q)l};

and at time t, each of these particles (conditionally) has the Gaussian distribution
of mean 0 and variance m(a)t. The total number of particles near ~yt is therefore
roughly

exp{t[m(r) — 0I(m, Q) — v*/2m(a)]},
so that we expect to find particles near ¢ if and only if

7% < sgzp{2m(a) [m(r) — 0I(m,Q)]}.

The problem with the above argument is not one of fussy details of rigour. For
example, Lemma 4.7 below makes some of the reasoning precise. The problem
is that, if for example, the initial situation is that there is one particle of type

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

e

P

L9
'a\

A

g \\
AN

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

'am \

A
y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Algebra, analysis and probability for a coupled system 85

1 situated at a randomly chosen point on R with density 18 exp(—|Bz|), where
0 < B < |A(8)], then we would get the wrong answer from the above heuristics:

(1.48) ‘expectation waves’ and ‘particle wave-fronts’ can move at different speeds,

and it can be very difficult to decide when the answer given by the above heuristics
is correct.
The following theorem explains the structure of our proof of Theorem 1.44.

(1.49) Theorem. (i) Let ¢, A and Z, be as in Theorem 1.39, and let App()\)
be the Perron—Frobenius eigenvalue of %)\QA + 0Q + R. The fact that Z) is a
martingale implies that

(1.50) li{ninft‘lL(t) > A 'Apr(\)  (as.).
(ii) Since Z,(o0) exists in L' and Z,(0) = 1, we can define a measure Q,
equivalent to P on F,, by
(1.51) dQ@,/dP = Z,(o0) on Fy, whence dQ,/dP = Z,(t) on F,.
Then
0
(1.52) My(t) = Zx(8) " 55 2 (1)

defines a ()\-martingale, and
(1.53) t'My(t) >0 (as.).
This implies that

(1.54) limsupt "L(t) < %APF()\) (a.s.).
(iii) As ¢ | c(6), we have
(1.55) A 'App(X) — —c(f) and %APF()\) —c(0),

so that (1.45) follows.

2. Proofs of algebraic results

(a) Proof of Lemma 1.11
The idea is to extend results from 8 = 0 to other values of 8.

Part (i). The characteristic polynomial of K(S) is

Xf,e(A) = 5152[F£9()‘)F§9()\) — 0°q1g),
where
FP(X) =1a\® + eX —r; — bg;.
When 6 = 0, x3, has two real positive roots and two real negative roots. For

0 > 0, x24(0) # 0, and for 7 > 0, we have Im x5 ,(ir) < 0. We see that as 6

increases from 0, no root of xJ, can cross the imaginary axis. Thus d,(S) = 2 for
every 6 > 0 and every c. n
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86 A. Champneys and others
Part (ii). The characteristic polynomial of K. o(T) is
(2.1) XZ:(,(/\) = 6.6, H(\, ¢,0) = 6.6, [F1(\, ¢, 0)Fy(\, ¢,0) — 62q1¢2],
where
(2.2) Fi(\c0) = %ai)\2 +eh+r; —bg;.

When 6 = 0 and ¢ > 0, all four roots of XZG have negative real part. Suppose

that for some 6 > 0, ng has an imaginary root A = ir, where 7 # 0. Then on
looking at imaginary parts, we conclude that

(=1aim® + 71— 0qy) + (—Laam® + 7y — 0gz) = 0,
so that the bracketed terms have opposite signs; and looking at real parts, we
have
(—3017° + 11 — Oq1)(—3ao7’ + 12 — Ogp) — P77 — 021g2 = 0,

which is now clearly impossible. Hence xZe cannot have a non-zero imaginary
root.
We see that A = 0 is a root of x7, if and only if

0 = 0o := 112/ (qir2 + g2m1) = 1/(p1 + p2),

and that the derivative of x7,()) at A = 0 is then strictly positive, so that 0 is a
simple root. Hence, ds(T") = 4 for § < 6y, and ds(T") = 3 for 6 > 6. [ ]

Part (iii). The characteristic polynomial of K(E, ) is
5152[131(/\)152(/\) - 02(11‘12]7
where
Fi(\e,0) = La;\* + eh + 2r /A + 6,
Fg(/\, c,0) == %(12)\2 + e\ — 2ryy/A + Ogs.
The proof now proceeds along similar lines to that of part (ii), and is skipped.

(b) Proof of Lemma 1.13

We continue to use the notation in (2.1) and (2.2). If v is an eigenvector of
K. o(T) corresponding to A, then

Fl()\, 0,0)’01 + 9(]1’02 = 0.

We learn two things from this: firstly, that the eigenspace corresponding to an
eigenvalue has dimension 1; and secondly, that ) is a stable monotone eigenvalue
of K.o(T) if and only if A is a real negative eigenvalue with Fj(\,c,6) < 0 for
one, then both, of i =1, 2.

Suppose that K.(T') has a stable monotone eigenvalue A. Then, since (for
i=1,2) Fi(\ ¢, 6) <0, the quadratic Fj(-,c,6) has real roots u;,v; with p; < v;.
Set py := max(u1, u2) and p_ := min(py, p2); and define v, and v_ analogously.
Then

Fi(vi,e,0)Fz(vy,e6) =0,

and, since both Fj(-,c,0) increase to the right of v,, K.y must have a unique
(non-monotonic) eigenvalue to the right of v,. By similar reasoning, K.¢(7T')
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Algebra, analysis and probability for a coupled system 87

must have a unique real non-monotone eigenvalue to the left of y_. Since K (T)
has at least three real eigenvalues, it must have four real eigenvalues (if we count
algebraic multiplicities); and the fourth real eigenvalue must lie within (u,,v_)
and must be stable monotone.

Continue to assume that K o(1T') has a stable monotone eigenvalue X. Now let
¢ > c. Then, for i = 1,2,

F,(\,¢,0) < Fi(\ ¢, 0) <0,
and
Fi(\8,0)Fy(),6,0) — 60%q1gs > 0.
By continuity, there must exist A < A with
Fi()\&6) <0,  Fi(\é0)Fy(\éE0) —0%qg, =0,

so that X is a stable monotone eigenvalue of Kz q(T').

Note that the argument which we have just given establishes result (1.14). For
any fixed A < 0, we can choose a large ¢ such that at (A, ¢, ), we have F; < 0
(¢=1,2) and F1F, — 60%q1q> > 0, so that ¢ > ¢(#). The finiteness of

c(6) :=inf{c > 0: K.o(T) has a stable monotone eigenvalue}

is assured.
We now prove that ¢(6) > 0. Let

El(H) e il}fFi()\,C, 0) - —%cz/ai “+r; — 6(]1

Then it follows from (1.14) that if ¢ > ¢(6), then
<0 (i=1,2),  £ily > 0%qq,
so that
> 2a;(r; —0g;) (i=1,2)
and
[€® = 2a1(ry — 0q1)] [ — 2as(ry — 0gy)] > 46%a1a2¢1¢o.

If it were the case that ¢(8) = 0, then we could let ¢ | 0 in the inequalities just
derived to obtain

ri<lg (i=1,2),  (r1—0q)(r2—0g) > 0°qe,
yielding the contradiction

(Recall that p; = ¢;/r;.) Hence, ¢(8) > 0 for every 6.
The rest is easy. |

(¢) Proof of Lemma 1.19

Parts (i) and (ii) of Lemma 1.19 really are an immediate consequence of defi-
nitions and the uniqueness of the Perron—Frobenius eigenvalue of matrices with
positive off-diagonal elements. As already stated, Part (iii) of Lemma 1.19 is a
trivial case of a standard Donsker—Varadhan result on Legendre transformations
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(Ellis 1985); and in this simple case the reader can prove it directly as an exercise.

Proof of Lemma 1.19(iv). Set

d(my) == m(r) — 6I(m, Q) = m(r — 0q) + 26[qqem, (1 — my)]"?,
B(p,my) = fum(a) + p~ d(my) = juas + zuma(ar — ag) + p~ g(my),
c(f) :=inf sup P(u, m), d(0) := sup inf ®(p, my).

u>0 mle[O 1] m1€[0 1] k>0

Of course, the fact that c¢(6) > d(6) follows from the definitions.
Let M := {m; € [0,1] : ¢#(m1) > 0}. It is clear that for m; ¢ M, we have
inf{®(u,my) : p > 0} = —o0, whence
d(f) = sup 1nf D(u,my).

mieM >0

Because ®(-,m,) is convex on (0, 00) for m; € M, and ®(u, -) is concave on M for
p € (0,00), standard theory (see Ekeland & Temam 1976, ch. VI, §2.2) implies
that

de) = inf sup D(p,my).
B>0myem

Now, ¢ is strictly concave on [0, 1] with infinite derivatives at 0 and 1. Hence, for
fixed p > 0, there exists a unique m;(x) in [0, 1] such that

P, (p)) = sup  D(p, my).

m1€[0,1]
We have
302 (a1 — ag) + ¢ (7 (p) = 0,

where ' denotes differentiation with respect to m,; and since ¢” < 0 on (0, 1) the
function 7, (p) is real analytic. Moreover,

plar — ag) + ¢" (i (p)) i (1) =0,
whence
-&% [P(r ()] = ¢' (i ()i (1) = 5% (a1 — a2)?/¢" (i) < 0.

Now, since I(m,Q) = 0, ¢(m) = w(r) > 0, and it is clear that if we define
L:={p: ¢(mi(p)) < 0}, then either £ = [uo, 00) for some o > 0 or £ = (). Now
if £ = [po,00) and p > po, then

£ [P0 G)] = H)(@) = 0 ()~ > 0,

so that
c(0) = inf D(u, 1 (p)).

Ko
Now, since ¢ and @ are concave functions of m, for p > po, sup,, e @(1, m1)
is attained at a point m; = m,, where ¢(m,) = 0 and 7, is independent of .
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Algebra, analysis and probability for a coupled system 89
Hence,
inf sup ®(u,mi) = inf jumm(a) = juom(a) = sup B(po,ma).
HZ 1o my EM 2o mi1EM
Therefore,
d(f) = inf sup P(p,mq) = inf sup P(u,m;)
#>0mem K<HO myEM
= inf sup P(p,my) = c(6).
HSHO my€(0,1]
In the remaining case when £ = (), the result is obvious. |

(d) Proof of Lemma 1.24
The derivative with respect to (A, c) of the map

(/\v ¢, 0) = (H()‘a Cy 0)’ HA()‘a Cy 0))

has Jacobian
2

J:_Z:I)\.I:I/\c HH)‘,\, where H)‘C = 8)\

8,etc

At (A(6),c(0),0), we have

Hc:)\(F1+F2) >0, since /\,FI,F2<0, )
0= Hy = (a1 A+ ¢)Fy + (a2 A + ¢)Fy, so that (a1 A + ¢)(axA + ¢) <0,
H,\)‘ = (IV[FQ -+ agFl + 2(01)\ + C)(az/\ -+ C) < 0.
Hence, J < 0 at (A(6),c(0),0). The smoothness of ¢(f) and A(6) now follows from
the Implicit Function Theorem.
The monotonicity of ¢(6) is of course clear from (1.23). (An implicit formula for
c'(0), from which monotonicity is also immediate, may be obtained by differenti-

ating the formulae in the above proof of smoothness.) The facts that ¢(0+) = cp
and c(oco0) = ¢y are left to the reader.

(e) Further algebraic results

Several other algebraic results play essential roles in the later analysis and
probability. It seems good sense to collect them here, while F;(A, ¢, 8), H(A,c,0),
etc., are fresh in the reader’s mind.

The next lemma, though trivial in the light of what we now know, is worth
stating separately.

(2.3) Lemma. Suppose that ¢ > c¢(). Let X\ and (8 be the two stable monotone
eigenvalues of K, ¢(T), labelled so that 3 < A < 0. Thus X is the monotone
eigenvalue of K. q(T') closer to 0, and (3 the eigenvalue further from 0. Then

H(:U’acaa):(F1F2)(,uaca9)_02(hq2 >0 fOI‘ ﬁ<:u<)"
Recall that Fi(\,c,6) <0 fori=1,2.
Proof. This is left to the reader. [ |

We need the following result in our proof of £! convergence of Z, in Theorem
1.39.
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(2.4) Lemma. (i) Suppose that ¢ > ¢(6). Let A be the stable monotone eigenvalue
of K. ¢(T') nearer to 0. (We know that —\c is the Perron—Frobenius eigenvalue of
(3X2A+60Q + R).) For u < X with p sufficiently close to ),

App(3p* A+ 60Q + R) = —pci(p) for some c1(p) < c.
(ii) Part (iii) of Theorem 1.49 is true.

Proof of (i). Locally for p near A, ¢; () is the unique solution of H(u, ¢, (1), 0) =
0 by the Implicit Function Theorem, because 0H (A, ¢,0)/0u < 0 by Lemma 2.3.
Thus,
OH  OH
— + = =0.
8,& + 80 cl (iu')

At (N ¢, 6), we have 0H/0u < 0, and

OH

— = AF1 + F

5e = A+ Fo) >0,
since A < 0, F; < 0 and F, < 0. Hence ¢;(\) > 0, and part (i) follows. Part (ii)
is left to the reader. [ |

For the probabilistic proof of uniqueness modulo translation of monotonic trav-
elling waves from S to T, the next lemma is important.

(2.5) Lemma. Suppose that ¢ > ¢(). Let 8 be the stable monotone eigenvalue
of K. ¢(T) further from 0. Then, for a > 3 with « sufficiently close to 3, the only
non-negative I-vector g such that

(2.6) (2o’A+acl +6Q + R)g>0
is the zero vector: g = 0.
Proof. We have

1oa®A+ acl +60Q + R = B g (a,c,6)
bg. F,

with determinant H(c,c,6). By Lemma 2.3 and the fact that H(3,c,6) = 0, we
can choose a > (3 so close to 3 that

Fi(a,c,0) <0 (i=1,2), H(a,c,0) > 0.
Then the inverse
_ F, —0q:
G=H(a,c0)*! a,c,d
(0,¢,6) (_qu n ) (a,¢,6)

of 2a’A + acl + 6Q + R has all entries negative. Hence, from (2.6) and the
non-negativity of g, we see that g must equal 0. |

Finally, we need the following result in showing that
Py y[Zx(00) =0] =0 or 1.
(2.7) Lemma. If w is a vector on I such that 0 < w < 1 and
R(w?®) = (R - Q)w,
Phil. Trans. R. Soc. Lond. A (1995)
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then either w=1on 1 orw=0 on I.

Proof. This lemma is easily proved assuming only that I is finite, Q is an
irreducible @-matrix on I, 8 > 0, and R is a positive diagonal matrix. For we
have

= - H)w, w = I'(w?)
where H is the Q-matrix §R™'Q and I is the irreducible stochastic matrix (I —
H)~*. Thus,
supw < sup(w?) = (supw)?,
so that supw = 0 or 1. If w(4) = 1, then w(j) must be 1 for every j such that
I'"(i9,7) > 0 for some n. [ |

(f) Proof of Lemma 1.29

The first equality in Lemma 1.29 is a consequence of the equality of two from
E.,E_ and T when 6 = 6, or 8*. The inequality for ¢/(#) is known from Lemma
(1.24).

If (af,ai,0,0) denote the coordinates of E. given by (1.6) then the charac-
teristic equation for the eigenvalues of the linearization at F, may be written

Fli (/\a &) 9)F2i(/\7 &) 9) = 92(]1(]2,
where
FF(\c,0) = 1Xa; 4+ Ac+ (205 — 1) — bg;.

Let 6 > 0. Then c4 (0) is characterized as the unique positive ¢ for which this equa-
tion has a double negative root with F;~ < 0. Recall that c(6) is characterized like
this too when (o, as) = (1,1) and the proof, by the Implicit Function Theorem,
that ¢(6) is a real-analytic function of # may be applied without change to yield
that c. () is smooth as well. If A*(#) denotes the negative double characteristic
eigenvalue when ¢ = c.(6) then A\* also depends smoothly on . Differentiating

the characteristic polynomial with respect to #, using the fact that it has a double
root at A = A% (6), gives

de:

0= X0)(FE + F) O 1 B2 S (205(6) - 1) - )
. d

+ 2 do [7’1(2@1 (0) — 1) — 9(]1] — 29q1q2

dC 40p]_
=\t F* 4 ph) == Fi(lzlz——————————————)
AZ(O)(FY + Fy)— a0 + G2 T 402,
Y T
v\ =)

Since Fif(A*(6),c+(),8) < 0 and A*(#) < 0, it follows that

dci 1
— >0 if 29<1/————.
dé 4p% + p1p2

Now we consider the case 6 = 0. Let
Q; = ;ﬁ-)\Qai + X+, 1=1,2,

Phil. Trans. R. Soc. Lond. A (1995)
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ay r a, r

k=2 42 ky= -4 2L

a; T a2 T2

That we have both k; < 2 and k, < 2 is impossible; and if both k&, > 2 and
ko > 2, then 1 is strictly between ay/a; and ry/r.

Suppose first that both k, and ky exceed 2; and without loss of generality that
((11/(12) >1> (7’1/7'2). Let
2(7’2 — 7'1)

a1T9 — AT

A= <0 and &= > 0.
a; — Qg \/2(7’2 - 7'1)(0/1 - 0/2)
Then, when (X, ¢) = (), &),
0
0=0Q; =Q2=Q:1Q2 = ~(Q:1Q2),
o\
and
o? ~,0Q10Qs  —airiagra(2 — ki)(2 — ko)
O\2 —5(@:1Q2) =2 I N (ra — ) (a1 — a2) <0.
Hence ¢(0) = ¢ in this case. Also, when (), ¢) = (}, ),
(@ -2r)Q =0, ((Qu —2r)Qa) = (@i —2r) 22 <,
O o\
and
0

(Q1—2r) <0,Q, =0, %>0

Hence c¢_(0) < ¢(0) and similarly ¢, (0) < ¢(0) in this case.
Now suppose that k; < 2 < ky. Let
2 2ry A
A=— - ¢= V2a;r.
1
Then, when (A, ¢) = (5\,6),
B an _ 82 _ a2 T2
Q=m0 e gu@Q) = (247 -2) <0

Hence ¢(0) = /2a;7;. Also when (A, ¢) = (A, é),

Q1(Q2 —2rp) = %(Ql(Qz —2r)) =0 and
Hence ¢ (0) = v/2a;7, = ¢(6). Now note that

1—2r) <0, Q2<0, A<O0

(
and hence c¢_(0) < ¢;(0) = ¢(0) in this case.
The case when ko < 2 < ky is similar and yields ¢, (0) < ¢_(0) = ¢(0).
The case when k; = ky = 2 is immediate. [ |
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3. Analytic proofs of existence and uniqueness results

The proof of Theorem 1.30 uses a shooting argument and proceeds via a se-
quence of lemmas, some of which are of independent interest. For example, in
passing we give an elementary proof of the rate at which travelling waves con-
verge to T' or E,. We often have in mind the two-dimensional (w;,w,) picture,
so that an equilibrium will be written (o, ) rather than (aq, as,0,0).

(a) Two key lemmas

The following lemma implies that if E in {E,,E_,T} has a monotone eigen-
value, then no bounded monotone wave can pass through E at a finite time. The
identity used to prove it goes some way to explaining the dramatic character of
the phase-space projections on w-space displayed in figures 3 and 4.

(3.1) Lemma. Let ¢ > 0 and 6 > 0 be such that for some E € {E,,E_,T},
K(FE) has a stable monotone eigenvalue. Let w be a solution of (1.3) on the
interval (—oo, &) with w(Z) = E and w'(Z) > 0. Then (w(z),w'(z)) is unbounded
as r — —o0.

Proof. Let the coordinates of E be (o, ap) and write the solution in the state-
ment of the lemma as w = (a;, &) + (u1,uz) where (u;,uy) = u. Then
AU + cu' + R(Du + u®) + 6Qu = 0,

where D := diag (204 — 1,205 — 1). Let v > 0 be the first two components of a
monotone eigenvector corresponding to the stable monotone eigenvalue A < 0 of
K(E). (Recall Definition 1.12.) Then

(AN?A+4 Ac+ RD +6Q)v =0,
and it is easy to see that ¥ = (gov;, ¢ v2) is a positive eigenvector of the transpose
problem

(AN*A+ X+ RD+60Q")0 =0
for the same eigenvalue A. In particular, if

P(z) = e D,
then
1A4¢" —c¢' + (RD +6Q")$ =0 on R,
and, since A < 0,
¢(z) — 0 as ¢ — —oo.

Now recall that, by definition, u(2) = 0. Suppose (for the purpose of obtaining a
contradiction) that {(u(z), v (z)) : © € (—00,Z)} is bounded. Then multiplying
the equation for u by ¢ and integrating on (—oo, &) gives

1 (A (@),0) + [ (R((6),0(5) ds = 0.
Since, by hypothesis, the first term on the left-hand side is non-negative and the
second is positive, this is a contradiction which proves the result. |

To apply certain standard theorems on differential equations, we need the fol-
lowing result which establishes convergence at exponential rate. It is worth noting
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that it holds for all # > 0, including the case § = 6, when (1,1,0,0) is not a hy-

perbolic equilibrium of (1.3).

(3.2) Lemma. Suppose that ¢ > ¢(6) and w is a solution of (1.3) such that
w'(z) > 0 on|zg, ) and w(z) — T as x — co.

If w(z) = (1,1) + u(z), then ||u(z)| + ||« (z)|| < ke ",z € [zg,00) for some
v,k > 0. An analogous result when ¢ > c4(6) and w(z) — E1 as x — oo also
holds for different positive constants v and k.

Proof. The equation satisfied by u, where w = (1,1) 4+ u, is
AU + cu' + (R4 0Q)u + Ru®> =0

where u(z) < 0 < v/(x), z € [®g,0), and u(z) — 0 as ¢ — oo. Let p be the
Perron-Frobenius eigenvalue of the operator (R + 0QT) with positive eigenvector
f. In general, p is merely the larger of the eigenvalues of (R + 6QT), but in this
particular case an inner product of the equation (R + 0Q")f = uf with the
positive vector (1,1) yields that p > 0. Now

F(Au", f) + e, f) + ulu, f) + (Ru®, f) =0, @ € [, 00).

Let € € (0,p). Then & € [zg,00) can be chosen sufficiently large that 0 <
(Ru?, f) < —€(u, f), and hence

HAU f) + e, f) + (p— €)(u, f) >0, x € [Z,00).
Let ¢(x) = (Au(z), f). Then since ¢ > 0, (u —€) > 0, ' > 0 and u < 0, there
exist k > 0, h > 0 such that
"+ h' + ki > 0, P <0<, x € [Z,00)
and
P(z) >0 as z — oo.
The first of these inequalities may be rewritten
(ehmibl)l + kehmlp > 0.
Now if ¢ is a solution of
(e"*¢) + ke ¢ =0,
then it is immediate, by Sturm’s Comparison Theorem (Coddington & Levinson
1955, ch. 8, Theorem 1.1) and by the fact that ¢ < 0 on [z, 00), that ¢ has at
most one zero in [#,00). In particular, the characteristic equation
P+ hu+k=0

has real solutions and, since h and k are positive, both solutions are negative.
Let them be denoted by —3 < —v < 0. Then

(0z + B) (0 + 7)) > 0, P <0, T € [Z,00).

If, at any point Z € [Z,00), (0, +¥)¥ (&) > 0, then it is immediate (using the
integrating factor e°*) that (9, + )1 (z) > 0 for all z > #. The integrating factor
e”® now yields

e p(x) = e p(2) for all = > &,
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whence, since ¥ < 0,

((Au(z), f)] = [¥(2)] <D p(2)], @ >4

The only other possibility is that (0, + v)¥ < 0 for all z € [Z,00). In this case,
since €%(8, + )1 is increasing, we find that for some k > 0,

V> ke, x>,
whence
(e71h) > —kelr=P)=
Hence, since 8 > =,

(o) > (@)~ k [ 0D,

whence 1 < 0 and
ke=® it B>,

o)l < {l%xe“w if =1,

for some k > 0. This shows that there exists ~v > 0 such that
|uy ()] + |uz(z)| < const. x e™7® for z > 0.
Now one integration of (1.3) on (z, 00) yields the same result for «} and w). This

completes the proof of the Lemma. |

(b) Ezploiting the mazimum principle
In the two-dimensional w = (w;, w,)-plane consider the parabolae,

Py : 0quwy — (11 + 0q1)wy + riwi =0,

Pg H 9q2w1 — (7’2 -+ 9(]2)11)2 -+ 7‘2'(1)% = 0,
and let {2, denote the open region in the first quadrant between P; and the w;-
axis, 1 = 1,2. The point T'=(1,1) e PPN P, forall ¢, § >0 and EL € PN P, if
0<0<o.

Note that the relative positions of £, E_ and T depend on the value of § and
that no two of them are commensurate with respect to the partial ordering on R?
induced by the positive quadrant. Let us denote by E; the element of {E,, E_,T'}
with the largest w;-component and by Ej3 that with the largest wy-component.

The region Y. Now let X denote the rectangle in the w-plane with two sides
on the axes intersecting at 0, a side through E; parallel to {w; = 0} and one
through Ej parallel to {w; = 0}. Let X denote the open convex subset of X whose
boundary comprises four straight line segments from X, a parabolic segment
from P, joining E, to F, and a parabolic segment from P, joining FE, to Es.
Thus the boundary of ¥ always has four straight line segments: in addition it
has two parabolic components when F,, E_ and T are distinct, one parabolic
component when two of E, E_ and T coincide and no parabolic component when
6 > 0*. (See figure 6.) Also X consists of the union of three sets: w, = X N2, N2y,
a relatively closed component w; whose boundary intersects {w; = 0} away from
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Figure 6.

the origin and a relatively closed component w; whose boundary intersects {w, =
0} away from the origin. Note that

(r1 + 0q)wy — mw? — 0grwy >0,  (wy,ws) € wy Uwy,

(ry + 0g2)wy — Tows — Ogewy >0,  (wy,wy) € wy U ws;

and hence, if w = (w;, w,) satisfies (1.3) then, by the maximum principle,

w; has no local maximum at z if w(z) € wy Uwy,

wsy has no local maximum at z if w(z) € wy Uws,

w; has no local minimum at z if w(z) € w; \ Wy,

wy has no local minimum if w(z) € w; \ Ws.

These observations lead to the following lemma.
(3.3) Lemma. Suppose w is a solution of (1.3) with w(z) € ¥ and w'(z) > 0
for all z € (—o00,%). If w(z) € X for all z € R then w'(x) > 0 for all z € R and
w(z) converges to T, E, or E_ as x — oo. If w(Z) € 0X for some & > &, and T is
the smallest such z, then at most one of w,(z) and w,(z) has exactly one local
maximum, and the other has no turning point, in (£,%]. Moreover w(z) ¢ X for
z € (Z,Z + €) for some € > 0. If w is not monotone on [, %) then w(Z&) is a point
of 8% which does not lie in the closed portion of the boundary which joins E;
and FE5 and passes through F.

Proof. Suppose that w(Z) € 0X,Z > & and Z is the smallest such z. Let z*
be the smallest z € [#,Z) at which one of w;(z) or wy(z) has a maximum, if
such exist. Say, without loss of generality, that w; has a local maximum at z*.
Then w(z*) € ws and wh(z*) > 0 by the maximum principle and the remarks
preceding the statement of the Lemma. Consequently, w](z) < 0 and wh(x) > 0
for z € (z*,2* + €) for some € > 0. However, w, has no local maximum and w;
has no local minimum in the interior of ws. Therefore w; and w, have no further
turning points until they encounter the boundary of X with non-zero derivative
directed outwards at a point of dws. (See figure 6, and also figures 3 and 4.)
Clearly, for some ¢ > 0, w(z) ¢ X for all z € (Z,Z + ¢€) in this case.

An identical argument when w, has a turning point before w; yields an anal-
ogous result. If neither w; nor w, has a turning point in [#,Z) then it follows at
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once from the use of a integrating factor in (1.3) that at least one of w} or w) is
non-zero at & and that w(z) ¢ X for all z € (&,Z + €) for some € > 0 because the
outward component of w'(Z) to 0¥ is non-zero.

Now suppose that w(z) € ¥ for all z € R. It is immediate from the preceding
argument that w’ > 0 on R. As w(zx) is bounded and monotone it follows that
w(z) converges, to w* € R? say, as x — oo. Since w satisfies (1.3) we conclude
that w* € {E,,E_,T}. [ ]

(¢) The unstable manifold at S

To establish the main result of §1 ¢ we shall use the preceding lemma, in con-
junction with a shooting argument in which initial data is chosen on the unstable
manifold of the zero equilibrium S. This ensures automatically that as z — —oo
the solution w of (1.3) converges to S; and it then suffices to show that the initial
data can be chosen so that the trajectory tends monotonically to one of the other
equilibria as £ — +o00. Note that a monotone travelling wave from S to T (E,
or E_) is possible only if T' (E; or E_) has stable monotonic eigenvalues. Note
also that, since the characteristic polynomial of K(S) is

616 {(3as XN + X — 1 — 0qy) (3aX® + XA — 1y — 0g2) — *quga }

it is immediate from the fact that r;, 8q¢; > 0, i = 1, 2, that there are two positive
and two negative real roots, counting algebraic multiplicity for all positive values
of ¢ and 8. The only positive eigenvalue with both

%al)\g 4+cA—7r; —0g¢ <0 and %az/\z +ch—1ry—0g, <0

is the one closer to zero, and it is therefore the only positive eigenvalue with a
positive eigenvector. Thus K () has exactly one unstable monotone eigenvalue
for all ¢ > 0 and € > 0. Let us denote this eigenvalue throughout by A > 0 and
the first two components of the corresponding eigenvector by (v;,v,) = v. Let the
other positive eigenvalue be A > )\ > 0 with eigenvector T = (71, 7,), 77 > 0 > Ts.
Let

TMS = Span {(glag% Xgly Xﬁ?% (le Qz» _/lylyi\.p_Q)} - ]R4'
Then T'Mg is the tangent space to the unstable manifold Mg of (1.3) at S.
Note that, since span{v,v} = R?, this description of 7'My yields a natural one-

to-one correspondence 7 from a neighbourhood of the origin in w-space onto a
neighbourhood of S on T'Mg given by

(a0 + Bv) = (a0 + Buy, s + By, aAT; + BAvy, adT, + BAv,)).

Let II(«, 8) denote the corresponding point on Mg obtained by composing 7 with
a chart map from T Mg to Ms whose derivative at S is the identity.

The following result follows almost immediately from the definitions and some
standard theory.

(3.4) Lemma. Let € > 0. There exists 6 > 0, k > 0 and 7 > 0 such that if 0 <
B <6,0< |al < kB and w is a solution of (1.3) with (w(0),w’(0)) = II(«, 3) then
w(0) > 0, w'(0) > 0 and (i) w(z) — S as ¢ — —oo and w'(z) > 0, z € (—o0,0];
(ii) if @ = k6 and B = 6 then wi(z) > 0, z € [0,7], and ws(s) < O for some
s € [0,7]; (iii) if @ = —k6 and B = é then wy(z) > 0, z € [0, 7] and w,(s) < 0 for
some s € [0,7]; (iv) ||w(z)|| < € for all z € [0, 7].
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Proof. Let (w(0),w'(0)) = (e, B). Then w;(0) = aw; + Py, + o((a, 5)) and
w!(0) = aT; + BAv; + o((a, B)), i = 1,2, as (a, 8) — 0. Since v > 0 there exists
k > 0 and 6§ > 0, such that if |a| < k8, 0 < § < 6 and (w(0),w’(0)) = (e, B)
then w(0) > 0 and w'(0) > 0. Since A > X > 0 it is now immediate by the Stable
Manifold Theorem (see Coddington & Levinson 1955, ch. 13, Theorem 4.5, for
an explicit statement of the result needed here) that, for such (a, §), w'(z) > 0,
z € (—00,0]. Also (w(z),w'(z)) — (5,0) as z — —oo since II(a, B) € M.

Now let 7 > 0 be fixed. Then w(z) = ae**v + Be2*v + o((, B8)),z € [0,7] as
(a,3) — (0,0). (See, for example, Chow & Hale 1982, ch. 3, Theorem 6.2.) If
a=ké, B =0, then

w(z) = 662" {ke® 2?5 v+ o(1)}, =z €[0,7],
and
w'(z) = 662" {Mke® V5 + M+ 0(1)}, = €0,7],
as & — 0. Since T, < 0 we can choose 7 = O(log 1/k) such that wy(7) < 0 and
wi(z) > 0, z € [0,7] for § > 0 sufficiently small. Clearly for § > 0 sufficiently

small |w(z)|| < €, = € [0,7]. This shows (ii) and (iv) in this case. An analogous
argument yields (iii) and (iv). This completes the proof. [ |

(d) Approaching the boundary of X

Henceforth, let 6 and k& be fixed by the preceding lemma, and let M =
{II(e,6) : —ké < a < kb} C M.

(3.5) Lemma. IfII(&, 6) is a point of M whose trajectory meets 0X in finite time
then it exits from X at that time by Lemma 3.3. The trajectories through II(«, §)
for a sufficiently close to & also leave X in finite time and both the exit time and
the exit position on X are continuous functions of & in a neighbourhood of é.

Proof. This result is a standard consequence of the the fact that the orbit
through II(&,6) immediately leaves ¥ when it first meets X and classical con-
tinuous dependence theory for initial value problems. |

Let M7z be the set of points of M for which the solution of (1.3) with that
initial data is monotone and convergent to the equilibrium T as x — oo. If E,
exist, define Mg, similarly.

(3.6) Lemma. The sets My, Mg, and Mg_ are closed (possibly empty).

Proof. Let {(w,,w})} be a sequence in Myz. Without loss of generality we
may suppose, using the Ascoli-Arzela theorem and a standard diagonalization
argument if necessary, that {w,(z)} converges uniformly on compact intervals
to a solution w(z) of (1.3). Also all the sequences {w*)(z)} of kth derivatives
converge uniformly on compact intervals. In particular w’(z) > 0 for z > 0. Since
{wn(z) :n €N, z € [0,00)} C (T —R?%), by the monotonicity of orbits, it follows
that {w(z) : 2 € [0,00)} C (T'—R%). Since w is a bounded monotone solution of
(1.3) it is now immediate that (w(z), w'(z)) converges as z — oo to an equilibrium
(w,0) of (1.3) with w € (T — R%). But even when they exist neither £, nor E_
is commensurate with 7' with respect to the partial ordering on R? induced by
R? (except of course when E_ and T coincide and § = 6,). Since there are no
other non-zero equilibria of (1.3), w(z) — T as x — oo and the proof that My
is closed is complete.
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Since no pair from E,, E_ and T are commensurate with respect to the usual
partial ordering when they are distinct, the above argument may be repeated to
show that Mg, and Mpg_ are closed as well. [ ]

(e) The shooting argument for existence

We will denote the set {T,E,,E_} by the set {F;, F,, E3} in the notation
preceding Lemma 3.3. (We do not exclude the case when two of the these coincide
or E; and E_ do not exist.)

In what follows, we deal with the most awkward case, namely that in which
¢ > max{c;(0),c_(0),c(d)} and the possibility of monotonic travelling waves
to each of E,, E_ and T arises. Other cases, when there are fewer than three
equilibria with stable monotone eigenvalues, may be treated in exactly the same
way. The only difference is that if for i € {1,2, 3}, E; exists but does not have a
stable monotone eigenvalue, then it cannot be the limit point of a monotone orbit
from S. This observation enables the shooting argument to be used, essentially
without change, since such equilibria play no distinguished role and are treated
as any other point of X from the point of view of continuity of exit times.

We will show, for i = 1,2, 3, the existence of II(«, §) € M whose orbit converges
monotonically to F; as £ — 0o, and the proof of existence will be complete.

By Lemma 3.5, the time for an orbit through a point of M to leave X is
continuous at a point IT(a, ) on M whose orbit leaves X in finite time. Hence
the exit point on 90X is a continuous function of @ when (w(0),w’(0)) = II(e, §),
—ké < a < ké, at points a whose orbit leaves X in finite time.

Let a3 = sup{a: the orbit through II(«a, 6) leaves X at the point of OE; for all
a € [—kb,&)}. (Here OEj3 is the open segment of 0X joining O and E3 which does
not contain E; or E,.) By Lemma 3.4(iii) the set defining a3 contains —ké and so
az is well defined and a3 < ké by Lemma 3.4(ii). Suppose that the orbit through
II(as,6) is not monotonically convergent to E3 as @ — 0o. Then, by Lemmas 3.1
and 3.3, we conclude that either the orbit through IT(as, ) leaves X at a point not
in OF; or it is monotonically convergent to one of E; or E,. The former cannot be
the case by continuity of the exit point as a function of a € [—ké, k6] by Lemma
3.5. We conclude that the orbit through IT(as, ) converges monotonically to one
of E; (or E;) as x — oo. (When there is only one equilibrium the proof is now
complete.) If the corresponding solution of (1.3) is denoted by @ then w(&) is

then in a neighbourhood N of E; (or E,) for all Z sufficiently large. Choose an
open neighbourhood Nj of E; (or E,) which does not intersect ws and let & be
sufficiently large that w(z) € N3, w'(xz) > 0, for all z > &. If w is the solution
with (w(0),w’(0)) = (e, §) for o < aj sufficiently close to as, then w(Z) € N3,
and w'(Z) > 0, by continuity. In order for w to leave X at a point of OFs, as it
must do, it is necessary that w; has a local maximum at some point £ > Z before
it meets Y. But this is impossible since w(Z) would then be in w3 and w’(z) > 0
for all t € (2,2). (For w(z) to get to ws, w must have a local maximum for ¢ > &
with w(z) ¢ ws. See figure 6.) This contradiction shows that the solution with
(w(0),w'(0)) = II(&, ) converges monotonically to E3 as  — oo.

An identical argument yields the existence of a point IT(a;, 6) such that w(z) —
E; as z — oo when (w(0),w’(0)) = II(a, 6).

Let a; denote the smallest a in [—k§, k6] such that w(z) — E; as ¢ — oo
if (w(0),w'(0)) = II(a;,6) and let a3 be the largest o in [—k6, ;] such that
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w(z) — E3 as ¢ — oo if (w(0),w’(0)) = II(as, 6). These exist by Lemma 3.6 and
the preceding discussion.

Suppose that there is no orbit through II(a, ), a € (aq,a3) at t = 0 with
w(z) — E» as x — 00. A repeat of the argument in the first part of the proof
shows that all such orbits must meet 90X at a point of the open boundary segment
E,E;. (If an orbit through II(«, ) meets 0X at E,, Ej, or points of OE; or OF;
then, by Lemma 3.1 and the preceding demonstration, the definition of a3 and
oy would be violated by the existence of another monotone orbit converging to
E, or E; with (w(0), w'(0)) = II(e,$), a € (a1,a3).) Moreover all such orbits
must be monotone by Lemma 3.3.

Now if a € (ay,a3) is close to a; (a3) then it follows easily from their mono-
tonicity that orbits through II(«, ) must meet ¥ at a point close to E; (Es).
However if all orbits for a € (a;, a3) meet the boundary segment E; F3 with non-
zero deriative then the continuity of the exit position is guaranteed and an elemen-
tary connectedness and continuity argument gives the existence of as € (ay,a3)
whose monotone orbit meets 0X at E,. But Lemma 3.1 implies that it must do so
with zero velocity. Hence the existence of all three monotone orbits is established.

[ ]

(f) Proof of uniqueness modulo translation

To establish uniqueness of travelling waves from S to F;, i = 1,2, 3, it suffices,
because of the change of variables at (1.26), to prove that when ¢ > ¢(#) then the
wave from S to T is unique.

Henceforth suppose that ¢ > ¢(f). Then there are two stable monotone eigen-
values of T, A\; < Ay < 0, say, and there are two other eigenvalues A3 < A;
and Ay > X,. Let the eigenvectors corresponding to A; be e;. If A\; = A, let the
unique normalised eigenvector be denoted by e,. (Recall Lemma 1.13 that when
a monotone eigenvalue has algebraic multiplicity 2, its geometric multiplicity is
1.)

Now suppose that w is a monotone travelling wave from S to T. If w = (1, 1)+u,
as in the proof of Lemma 3.1, the equation for u is

1AV + v’ + R(u*)+ (R+60Q)u=0 and u<0 on R

Suppose that there are two solutions v and u* of this equation, both of which are
monotone and converge to (—1,—1) as x — —oo and

(3.7) u(z) = ape™®ey +0(€®) as x — 00, az #0, if A # A,
and
(3.8) u(z) = apre™ ey + 0(e™?) as x — 00, ay #0, if A =\,

and similarly for u* with oj in place of a,. Now observe that the set of solutions
of (1.3) is translation invariant. Hence we can replace u* by 4 where

i(x) = u"(z + (A2) " log(az/03)).
If

, then Ay (z) -1 as |z] 00, i=1,2.
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Multiplying the equation for u; by 4; and vice versa and subtracting gives
Now suppose that sup{h:(z) : z € R} = M > 1. Then clearly it is attained at a

point where

’lAlll <u < 0= Ulﬂll - Ullﬂl > ulﬁ'l' - u'l'ﬂl,

whence
(751 ﬁ2 > ’lAlll’U/Q .

Therefore sup{h,(z) : z € R} < sup{hz(z) : z € R}. But now the argument
may be repeated interchanging the subscripts to prove that the opposite strict
inequality holds. We conclude that M = 1 and the uniqueness result is immediate.

Proofs of asymptotic expressions. To complete the proof, we prove that u and
u* must have the asymptotic forms given at (3.7) and (3.8).

We have seen in Lemma 3.2 that (u,u’) converges to 0 exponentially fast as
z — oo. Therefore, by standard theory (Coddington & Levinson 1955, ch. 13,
Theorem 4.3), we can state that

log || (u,v) ||
x
where 8 € {A1, A2, A3, A4} is negative. Recall that A; and A, are the only stable
monotone eigenvalues and that in our notation A3 < Ay < Ay < M. If 8= Ay
then by further standard theory (Coddington & Levinson 1955, ch. 13, Theorem
4.5), it follows that u(z) = ase*®e, + o(e*+®) as z — oo for some ay # 0. This
is impossible since the eigenvector e, corresponding to A4 is not a positive vector
and u < 0. Thus 8 < as.
Now we show that 8 = A,. As in the proof of Lemma 3.1, let

P(z) =e "3, ¥>0,
be the solution of the adjoint problem
14¢" —c¢' + (R+60QT)¢p=0 on R
If the equation for u is multiplied by ¢ and integrated over (—oo,z) we find that

— 0 as T —

LA, B) + A{Au, B) + 2e(u, )} (z) + 2 / (Ru?, ) ds = 0.
It is immediate that (u,u’) does not decay to zero at an exponential rate which
is faster than e*2® as x — oo. Thus 8 = ),. In the case A\; < \;, the proof is
complete.

Now suppose that ¢ = ¢(f), A1 = A, and note that e, belongs to the kernel and
A2 Ae, + ce, belongs to the range of the operator $A3A + ¢y + R + 0Q), because
the algebraic multiplicity of A, as an eigenvalue of the four-dimensional stability
matrix K (7') is 2, while its geometric multiplicity is 1, in this case. Since © lies in
the kernel of the transposed operator it is immediate by the Fredholm Alternative
that ((A2A4 + c)es, ©) = 0. Now suppose, seeking a contradiction (see Coddington
& Levinson 1955, ch. 13, Theorem 4.5), that

u(z) = ae’®ey 4+ 0(e*?®) and v/ (z) = ale*Tey +0(e™®) as z — oo.
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When this is substituted into the integral identity above we find that

T

o(e?”) = e’\z“”/ (Ru?, ¢) ds.

—0o0

This is a contradiction which shows that in this case u(z) = aze?® + O(e*??) as
x — oo for some non-zero «. This completes the proof. |

4. Proofs of probabilistic results

(a) A one-particle model

Let I :={1,2} and E := R x I. We consider a process ({,n) on E, where 7 is
an autonomous Markov chain with Q-matrix 6@, and where, while n =y € I, £
is a Brownian motion with zero drift and with constant variance coefficient a(y).
Thus, (£,7n) has formal generator H, where

8’F
Ox?’

(HF)(z,y) =0 Qy,5)F(x,5) + 3a(y)

jeI

We write P, , (with associated expectation E, , ) for the law of our process when it
starts from one particle at position £(0) = z and of type n(0) = y. By martingale
(respectively, local martingale, supermartingale,...) we mean a process which
is for every P, , a martingale (respectively,...) relative to the natural filtration
(P,,,-augmented if you wish) of the (£, n) process. Let r be a positive function on

Let A < 0, let v, be the Perron-Frobenius eigenvalue of %)\214 +60Q + R, and
let vy be the associated eigenvector with v,(1) = 1. Set

(4.1) 6a(6) 5= exp ([ 1) s ) oa (1) xp3& — 7a8)

It6’s formula shows that ¢ is a local martingale; and since ¢, is also non-negative,
it is a supermartingale. It is important that ¢, is in fact a true martingale. To see
this, first pick u < A (< 0). Then apply the standard inequality for non-negative
supermartingales to (, to obtain for a > 0,

P, (up Guls) > a) < a By (G(0)) = a”u(y)e,
from which it follows that, for u > 0,
Py (6 < —u) < Ko, 0
for some finite K (z,y,t). However, it is also true that, for some finite Ky (z,y,t),

sup (i (s) < Ka(z,y,t) exp </\ inf 53) .

s<t

Hence sup,, {x(s) is in each £'(£2, F,P,,), and hence (, is a true martingale.
We let (U, : A > 0) be the resolvent of the (£,7) process. We consider Uy as a
bounded operator of norm A~! on the space bB of bounded Borel functions on R.
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(b) Martingales for the multitype process

We now study the multitype process at (1.33) of §1 f. The state-space for this
process is

S = U ({n} x R* x I"™).

n>1

We give the formula for the formal generator G of the process at (1.33), in case
it clarifies the structure for someone who likes generators. We have

(4.2) G=Ga+Gqg+ G,
where, for n > 1, z € R*, and y € I", we have (for F': S — R)

GaF)(mziy) =3 ;a@k)g;—g

=1

GoF)mizip) = 03" S Quns ) {F(n; 2 s15(y)) — Flmsz:1)),

k=1j#yk

GrF)(miz:y) = 3 rlw) (F(n + 1 (2, 22); (0r0s)) — Flms )},

kS

where Skh](y) (yla yk—lajayk+17"'ayn) and ("I;’:I"k) = (‘Tl"“axnaxk)’ etc.
If F : [0,00) X S — R and

(4.3) {( )F}tnxy—o (nzl,zeR", yel),

then F(t; N(t); X(¢); Y (t)) is a local martingale.
In particular, if u solves our coupled reaction-diffusion equation (1.2), then, for
t>0,

N(r)

(4.4) M(r) = H u(t —r; Xi(r); Ye(r))

k=1

defines a ‘multiplicative’ local martingale M on time-parameter set [0,t]. If 0 <
u < 1, then 0 < M < 1, so that M is a true martingale and

Ezvy M(O) = ]Eﬁ,yM(t)5

that is,
N(t) N(t)
(4.5) u(t,z,y) = By y H f(Xk(t), Yi(t)) = Eoy H fz+ Xi(t), Yi(t)),
k=1

where f(z,y) = u(0,z,y). Part (i) of Theorem 1.36 is proved.
Still guided by McKean, we now look at ‘additive’ martingales. If h : [0, 00) x
R x I — R satisfies the linear equation
Oh 5*h

— +1A— +60Qh+ Rh =0,
8t+8+Q+
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then, again by using (4.3),

N(@)

Z h(t, X1 (t),Yx(t)) is a local martingale.

Note that Part (ii) of Theorem 1.36 follows from the fact that M at (4.4) is a
local martingale and from the local-martingale property just established.

We now recall the definition of Z, from (1.40). Let ¢ > ¢(6). Let A be the
monotone eigenvalue of K, ¢(T) nearer to 0. Thus —Ac is the Perron-Frobenius
eigenvalue of $ AN’ +6Q+ R; let vy be the corresponding eigenvector with vy (1) =
1. Define

N()

(4.6) Zx(t) == > va(Ya(t) exp{A[Xy(t) + ct]}.

k=1

Then Z, is an ‘additive’ local martingale; and since it is non-negative, it is also a
supermartingale. We wish to show that Z, is a true martingale. For this purpose,
we need the following intuitively obvious lemma.

We now remove the ‘source’ and ‘target’ connotations from S and T, leaving
them free to denote stopping times. We write K instead of K. 4(T).

(4.7) Lemma. For any non-negative Borel function f on R x I, we have

N(t)

M EACRADIES By exp ] [ r(n)ds} 6m).

Proof. It is enough to prove this result for f in Cy. It is further enough to show
that if 4 > max(ry, ;) and S is a exponentially distributed random variable of
rate u, independent of our branching process and of (&, 7), then, for f € Cy,

N(S)

(48) g z y - zy Z f Xk )) = Eg,y exp{/os T(nt) dt} f(€SanS)'

The finiteness of g is clear. Let T' be the first branch-time of the (N, X,Y)
process. On splitting g according to which of S and T is the smaller, we find that

9(z,y) = g"(2,y) + 29" (2, ),
where g* and g** are the bounded Borel functions:
9" :=E_[f(X:(5),Y1(5)); S < T
= lE‘.f(Xl(S),Yl(S))eXp<— /OS T(Yl(t))dt>;
9" =E [¢(X\(T),Yi(T)); S > T] = E.e " g(X:1(T),Y1(T)).

Formally, the Feynman—Kac formula shows that
(k+R—-H)g" = pf,
and this suggests the rigorous formulae (see Williams 1979, §II1.39):
(I+U,R)g" = pU,f, g =p(I+U,R)U,f.
Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

\\

/\
'\

//\

S A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\
a \

y 9

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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(Note that, since > max{r(¢) : i € I}, we have |[U,R|| < 1.)
Next, we use the fact that

T At
Iipgsy — /0 r(Y1(s))ds is a martingale.

We integrate the bounded previsible process e #'g((X(t),Y1(t—)) against this
martingale, and use the fact that Y (7'—) = Y(T') almost surely, to obtain

Y| L e (Y (1)9(X (1), Yi(0)

—E / E. /
0 T

= (U.Rg) - E..e_uT(UuRg)(Xl(T)aYI(T))

=U,Rg — BU,Rg.
Thus, on bB,

B(I+U,R) =U,R, B=U,RI+U,R)"'=(I+U,R)'U,R.
We now have
g=U+U,R)"{uU,f +2U,Rg},
so that
(I-U.,R)g=uU.f,  g=p(—U,R)UL.f.

The Feynman-Kac formula gives the same expression for the right-hand side of

(4.8). n

We know that Z, is a supermartingale. From Lemma 4.7 and the martingale
property of the process () at (4.1), the expectation of Z,(¢t) is constant in t.
Hence, Z, is a true martingale.

(¢) Convergence properties of Zy martingales

The full assumptions which we have made about Z, (that ¢ > ¢(6), that \ is
the monotone eigenvalue of K,y nearer to 0, etc.) will now be needed in proving
that Z, converges in L? for some p > 1 (and hence in £'). According to one of
Doob’s theorems, we need only show that Z, is bounded in £? for some p > 1.

For investigating convergence in £?, the following lemma is indispensable. The
result is taken from Neveu (1987), and the method of using it is adapted from
that paper.

(4.9) Lemma (Neveu). Let p € (1,2]. For any finite sequence W1, ..., W, of non-
negative independent variables in L£P and any sequence ¢y, ..., c, of non-negative
real numbers, we have

P (Z cka> <Y Rp(Wy),
k=1 k=1

where (W) := E(W?) —E(W)P for W € LP.
Proof of L' convergence of Zy. Fix t > 0. Because of the branching character

Phil. Trans. R. Soc. Lond. A (1995)
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106 A. Champneys and others
of the (N, X,Y’) process, we have for each s > 0,

N(s)
Zy(s+1t) = Z exp{A\[Xx(s) + cs|}Wi(t, s),

k=1

where, conditionally on F;, the Wi(¢,s) are independent, each with the P )
law of Z,(t) where y(k) = Yi(s) € I. Since t is fixed, and I is finite, Neveu’s
lemma applied conditionally on F; gives

N(s)

Euy{Zx(s +t)P | Fs} — Zx(s)P < Ki(t,x,\) Z exp{Ap[Xi(s) + cs]},

k=1

so that, on taking expectations,
N(s)
Euy{Zx(s +1)P} — Euy {Z2(s)"} < Ku(t, @, ANEq y Z exp{p[Xx(s) + csl},

k=1

where 1 := Ap < A < 0. We must choose p in (1, 2] sufficiently close to 1 that (see
Lemma 2.4) ¢ > ¢;, where we write —uc; for the Perron-Frobenius eigenvalue of
—;—,uQA +6Q + R and v,, for the corresponding eigenvector with v, = 1. But then

N(s)
Eoy » exp{u[Xx(s) + cs]}
N(s)
< Ka(@, 1, y) exp{u(c — c1)s}Eq,y Z v (Yi(s)) exp{u[Xi(s) + cis]}

< K3(x7 £y y) exp{u(c - 01)8},

since Z, is a martingale. Hence,

Z]EM{ZA(ms +s+1t)P — Zy(ms +t)P}

< de,x,,u,y)Zexp{um(c - 61)8} < 00,

and Z, is bounded in LP. |
Now we prove that, with the same notation and assumptions,

(4.10) w(y) := Py, (Z)(c0) = 0) =0 for all (z,y).

(The fact that w(y) does not depend on z is obvious.)

Proof of (4.10). Let J be the first jump time of Y; and let T" be the first branch
time of (N, X,Y"). On decomposing w(y) according as T' < J or T' > J, we obtain
Crw®)?® + 63,4, Qy, 2)w(z)
w(y) =
r(y) + 0q(y)

so that Rw = R(w?) 4+ #Qw. By Lemma 2.7, w =0 on I or w = 1 on I. When
Z, converges in L', then, obviously, w = 0 on I. ]

)

Theorem 1.39 is now proved.
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For the proof of the uniqueness modulo translation of the monotonic travelling
wave from source to target, we need the following result.

(4.11) Lemma. Suppose that ¢ > ¢(f) and that (3 is the stable monotone eigen-
value of K g further from 0, and that vg is the associated Perron—Frobenius
eigenvector of %62A + 6Q + R with vg(1) = 1. Then, almost surely,

N(t)

Zs(t) = Y vp(Ya(t)) exp{B[Xs(t) +ct]} — 0

k=1

ast — oo.
We prove this result too by modifying an argument in Neveu (1987).

Proof. Let 0 < p < 1. Note that therefore, for u,v > 0, we have
(u+v)P < uP + 0P

Again, let J be the first jump time of Y; and let T be the first branch time of
(N,X,Y). An obvious decomposition of the form

Z5(00) exp{B[X1(J) + cJ]} 25" (00) if J <T,
? exp{B[X,(T) + T} 2§ (00) + Z¥ (00)] i T < J,
leads to the formula

9(y) := Eo,y[Zp(00)"] < Boy exp{alX:(J) + ¢JI}H, - g(Y1(J))
+2Eo y exp{a[Xy(T) + T}, 9(Y1(T)),

where a := pf. On evaluating these expectations, we obtain

0 < {054, Q, 2)9(2) } + 2r(w)a(v)
9g\y) s )
[—3a(y)a?® — ca+r(y) + 0q(y)]
the denominator being positive for p near 1, and this rearranges to give

0< (30°A+ acl +6Q + R)g.

We know that g > 0 on I. Lemma 2.5 shows that if we choose p sufficiently close
to 1, then g = 0. The lemma is proved. ]

(d) Proof of Theorem 1.49
We now prove the various steps in Theorem 1.49 which lead to the important
result

(4.12) limt 'L(t) = —c() (a.s.) where L(t):= inf X;(¢).

k<SN(t)

Part (i). Let ¢ > ¢(#), and let A be the monotone eigenvalue of K.y nearer to 0.
Let Z, be the associated martingale. We see by considering the position of the
leftmost particle that

N
Z)\(t) == Z A (Yi(t)) exp{A\[ Xk (t) + ct]} > min(vy(1),vx(2)) exp{A[L(t) + ct]}.

k=1
Phil. Trans. R. Soc. Lond. A (1995)
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Since Z,(00) exists a.s., liminf[L(t) + ct] > —o0, a.s., so that
liminf ¢t 'L(t) > —c = A" App(N). ]

Part (ii). Recall that we are now working with the P := Py ; law, so that Z,(0) = 1.
Since Z converges in L', we can define a probability measure @, on F,, via

d@,/dP = Z,(o0) on F, whence dQ,/dP = Z,(t) on F;.
Define

My(t) = ZA(t)‘laa—)\ZA(t).

Because (0/0X)Z,(t) is a P-martingale, M, is a Q,-martingale.
For t > 0 and 1 < k < N(t), define

A (Ye(t)) exp[A Xk (t) — Apr(N)1] .
S vy (Y5(t)) exp[AX;(t) — Apr(M)E]
Note that H(t,k) >0 and 3, H(t,j) = 1. We have

N(t)

Mi(t) = H(t, k) {ua(Ya(t) + Xi(t) — App (M)},

k=1

H(t, k) :=

where uy(j) := v4(7)/va(J), so that

(4.13) T My (t) >t {I’Ilé}l u,\(i)} +t7 L(t) — Abp(N).
By Jensen’s inequality,

(4.14) M,(t)* < Z H(t, k) {ux(Yi(t)) + Xi(t) — App(N)t}>.
However,

62
Z\(t)~! sz(t)

is a Q)-martingale, and it is easily confirmed that this fact together with (4.14)
shows that the Q)-expectation of My (¢)? satisfies

QAMA()*] < Ki(A) + Ka(A)t
for finite K;(A\) and K>(\). Hence, for € > 0,

@ (sup{s MIMA(s)| s 2 < s <27 > o)

< QA<S;12§ My (s)] > z) < (@) 2K, () + 27K (V)]

by Doob’s submartingale inequality. By the Borel-Cantelli lemma, we have
t'My(t) -0, as.,
whence, from (4.13),
limsupt ' L(t) < App(N).

t—o00

Part (ii) of Lemma 2.4 clinches Part (iii) of Theorem 1.49, and the proof of (4.12)
is complete. |

Phil. Trans. R. Soc. Lond. A (1995)
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Algebra, analysis and probability for a coupled system 109
(e) Rounding off the probability
We have proved the McKean representation

N(t)
(4'15) u(t,m,y) = Ew,y H U(O, Xk(t)a Yk(t))

k=1

for the unique solution of our coupled reaction-diffusion equation (1.2) when
0 < u < 1 and the initial data u(0, -, ) are given. Because t ' L(t) — —c(8) (a.s.),
the last part of Theorem 1.44 is now obvious.

Proof of Theorem 1.41. We take ¢ > ¢(f), let A be the monotone eigenvalue of
K, ¢ nearer to 0, and let v, be the corresponding eigenvector with vy (1) = 1.

We are guided by McKean (1975). Suppose that u solves (1.2), that 0 < u < 1
and that, for all y,

(4.16) 1 —u(0,r,y) ~ vz(y)e (r — o).

For (temporarily) fixed € > 0, we have for large r,

exp {—(1+ €)va(y)e’} < u(0,7r,y) < exp {—(1 — e)v(y)e*}.
Now since L(t) + ¢t — oo (a.s.), we shall (a.s.) have for large ¢,

N(t)
exp{—(1+€)Zx(t H u(0, X (t) + ct, Yi(t)) < exp{—(1—€)Z,\(t)},

so that, with boundedness providing the rigour,
E,,exp{—(1+¢€)Zy(c0)} < liminfu(t,z + ct,y)
< limsup u(t, z + ct,y)
< By exp{—(1 — €)Zx(00)}.
On letting € | 0, we now obtain the desired result
(4.17) u(t,z +ct,y) - w(z,y) = E,, exp{—2Zx(c0)}.

Ezistence of a monotonic travelling wave from S to T when ¢ > ¢(6). It is now
intuitively obvious, and not that difficult to prove directly from the branching
property, that the function w(:,-) in (4.17) is a monotonic travelling wave from
S to T'. Note that

w(z,y) = Eo,, exp{—e**Zy(c0)},
that w(z,y) — 0 as x — —oo because Z, > 0 (a.s.), and that
(4.18) 1 — w(z,y) ~ vy(y)e (z — o0)
because Zy converges £! whence
By y Z3(00) = By 4y Z5(0) = v, (y).

Uniqueness modulo translation of the monotonic travelling wave from S to T. Let
¢ > ¢(f), and let W be a monotonic travelling wave from S to T. We know from
differential-equation theory, and have used in § 3, the result that either a suitable
translate of W satisfies (4.18), or a suitable translate of W satisfies

(4.19) L—b(a,y) ~ vp(y)e™ (2 — o),

Phil. Trans. R. Soc. Lond. A (1995)
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where 3 is the monotone eigenvalue of K, o further from 0.

If w satisfies (1.3) and (4.18), then u(t,z,y) := w(x — ct,y) satisfies (1.2) and
(4.16), so that from (4.17), we must have w = w. If & satisfied (4.19), then we
would have

w(z,y) =K, , exp{—2Zg(o0)} =1,
because Zg(co) = 0 (a.s.) by Lemma 4.11; and @ would not go from S to 7. W

The proof of unicity is now complete, and with it the proof of Theorem 1.41.
[ ]

It is interesting to compare the above probabilistic proofs of existence and
uniqueness modulo translation with the analytic proofs given in §3. We could,
for example, use the ODE results in §3 to obtain results on £' convergence of
our martingales. The probabilistic study of the ¢ = ¢(6) case (following Neveu’s
work) and of other convergence properties more refined than those considered
here will appear in a paper by one of us (J.W.). Of course, the methods in §3
dealt with the ¢ = ¢(0) case.

The Doob-h-transform associated with equation (1.26). For definiteness, we work
once more with the P := Py ; measure. Suppose that 0 < 6 < 0%, so that £, and
E_ exist. Let E, have coordinates (ay, as) in R?. Suppose that E, # (1,1). Then

M(t) — al—lai‘h(t)aé\ﬁ(t),

where N;(t) is the number of particles of type i at time ¢, is a positive martingale
of constant expectation 1. We may therefore define a probability measure P on
F., via the fact that

dp

- M(t) on F;.
The measure P is associated with the set-up (ai,as,qi, G2, 71, 72,6) defined at
(1.26) in exactly the same way as P is associated with the original set-up.

It is important to realize that though P and PP are equivalent on every F;, they
are mutually singular on F,,. This is because M (co0) = 0 almost surely (P); for if
we let (T7,) be the sequence of stopping times at which N;(t) increases by 1, then
M(T,) = oy M(T,—), so that M(o0) = oy M (00).

We thank the referees for their helpful comments. A.C. was supported by an SERC Research
Assistantship. S.H. and J.W. were supported by an SERC Research Studentship.

5. Addendum

Since the paper was submitted, Crooks (1994) has obtained the necessary gen-
eralizations in linear algebra for an extension of our probabilistic proofs of ex-
istence and uniqueness to the n-type case. We have also recently become aware
of some analytic work on the n-type case due to Vol’pert & Vol'pert (1993) who
use the classical method of upper- and lower-solutions to obtain existence, but
not uniqueness. Other models are under investigation, using the methods of this
paper.

Forthcoming work by Harris, and by Harris & Williams, proves the conjecture
made in §1a, emphasizing the role of the Legendre transform in turning large-
deviation heuristics into precise martingale results.
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